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Chapter 1

First things first

Most engineering problems involve solution of a given differential (or integral) equation with appro-
priate boundary conditions. The real physical system, through some assumptions is converted to a
physical model, which then is formulated into a mathematical model that has to be solved (Fig-1.1).
The solution of the mathematical system would yield to the determination of the act of the physical
system. But, in most cases, a closed-form mathematical solution is impossible, which in turn requires
a numerical solution.

Figure 1.1: From Real System to Mathematical Model

The Boundary Element Methods (BEM) is a numerical method to solve Boundary Value Problems
(BVP). In BVP, the governing equations (GE) which are given by the mathematical model in the
volume V (See Fig-1.2) are to be solved subject to some boundary conditions (BC) on the boundary
S (it is a general joke to refer to this figure as the continuum potato, since it looks like a little potato
and represents a continuous media).

Figure 1.2: The solution region (the continuum potato)

Since it is not possible, in most cases, to obtain a closed-form solution to the problem, numerical
methods are inevitable. Among these numerical methods, aside from BEM, most popular ones are;
Finite Element Method (FEM), Finite Difference Method (FDM), Finite Volume Method (FVM),
Boundary Node Method (BNM) and other Meshless Methods (MM).
Later, we will discuss the advantages and disadvantages of BEM over the other methods. For now,
we will focus on the preliminaries that will help us make the BEM formulation. For this, we will first
focus on the simplest boundary value problem: the Laplace equation.
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1.1 Laplace Equation

The simplest form for the Laplace equation is given as

k∇2u = 0 (1.1)

within a domain V having a boundary S. In Equation 1.1, k represents a corresponding material
property for the solution domain (can be, for example, the heat conduction coefficient for heat transfer
equations) and u(x, y, z) is the field variable that is to be found. The Laplace operator, ∇2 is defined
as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.2)

The problems with this equation appear in many areas of engineering and they are generally called as
the potential problems. This is because, a function φ is said to be potential if it satisfies

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (1.3)

Some examples of such engineering problems that can be said to be potential problems are: the steady-
state heat transfer, acoustics, flow of ideal fluids, electrochemical reactions, static electric field. In each
problem stated, the field variable u (or φ ) defines a different quantity to be found (e.g., for heat transfer
problems it is the temperature difference from the reference temperature) and k represents a material
property that is related with the material of the solution domain.

1.1.1 A Note on the notation

The definition of the Laplace operator stems from the Laplace equation for steady-state heat transfer.
The heat flux at any point P in, for example, x−direction is defined as

qx = k
∂u

∂x
(1.4)

It is very practical to use x1 for x−coordinate, x2 for y−coordinate and x3 for z−coordinate. With
this new notation, Equation 1.4 can be re-written as

q1 = k
∂u

∂x1

which can be generalized for three orthogonal coordinates as

qi = k
∂u

∂xi
(1.5)

for i = 1, 2, 3 (representing x− , y− and z−coordinates). We call this new notation where we name the
orhogonal Cartesian coordinates by giving them numbers as the indicial notation. Laplace’s equation
for heat flux is given as

∂q1

∂x1
+
∂q2

∂x2
+
∂q3

∂x3
= 0 (1.6)

This equation states, for no internal heat generation, the net flux on the surfaces of a differential
volume should be zero. Note that, one can write this in a simpler form as

3∑
n=1

∂qn
∂xn

= 0 (1.7)

If, instead of qn in Equation 1.7, we write the expression given in Equation 1.5, we would obtain

3∑
n=1

∂

∂xn

(
k
∂u

∂xn

)
= 0 (1.8)
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Assuming k to be constant, we would obtain

k
3∑

n=1

∂2u

∂x2
n

= k

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
= 0 (1.9)

Note that, if we redefine the Laplace operator which is given in Equation 1.2 with our new coordinate
system notation (e.g.. xi−notation) as

∇2 ≡ ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

(1.10)

we end up with the form in Equation 1.1.
It is also a good mathematical practice to note that the gradient operator being

∇ ≡ ∂

∂x1
i +

∂

∂x2
j +

∂

∂x3
k (1.11)

with i, j and k being the unit normal vectors along x1, x2 and x3 directions respectively, the Laplace
operator is given as

∇2 = ∇ · ∇ (1.12)

where · represents the dot product. Thus, it can be said that, with u being a scalar field, the Laplace
operator arises when we take the divergence of the gradient of that scalar field.

1.2 Definitions for the solution domain

At this point, it would be better to introduce some definitions. For this, please refer to Fig-1.3

Figure 1.3: The continuum potato revisited for definitions

We restate that the domain of the solution region (inside the potato) is referred to as V and the
boundary of this solution region is denoted by S. We select a point within the solution domain that we
will base our calculations (it is something like an observation point that we fix in the solution domain).
We call this point as the Fixed point (FP) and in the formulations denote it as A. We also define
another point, P, that can change the location within the solution region (and on the boundary).
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We will call this point as the varied internal point (when inside the domain) or varied boundary point
(when on the boundary of the domain), or in both cases, the varied point (VP). The Euclidean distance
between the VP and the FP will be denoted by r, and the unit vector along the ~AP direction is denoted
by r (the components of r are denoted by ri). When the VP is on the boundary, there is an outward
normal to the boundary at the VP, which will be denoted by n and the unit normal vector along this
direction will be denoted by n (the components of n are denoted by ni).
It is a common practice to refer to the coordinates of the FP as ai and the coordinates of the VP as
xi. For simplicity in later formulations, we will denote the relative position of the VP with respect to
the FP as Y with components being

yi = xi − ai (1.13)

It is easy to show that

r2 = (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2

=
3∑

n=1

(xn − an)(xn − an)

=
3∑

n=1

ynyn (1.14)

With this, one can obtain the distance as

r =

√√√√ 3∑
n=1

ynyn (1.15)

Also, one can note that, the components of r are given as

ri =
yi
r

=
(xi − ai)√∑3

n=1 ynyn

(1.16)

1.2.1 A short practice

Let us find the gradient of the distance between the FP and the VP. That is, we are in search of ∇r.
Note that the gradient of a scalar function is a vector which is defined as

∇r =
∂r

∂xj
i +

∂r

∂x2
j +

∂r

∂x3
k (1.17)

or in a more simplified manner, the components of ∇r are given as
∂r

∂xi
. Note that, if we call s = r2,

then ∇r = ∇(s1/2). To find ∇r, we proceed as follows: first, we apply the differentiation rule:

∂r

∂xi
=

1

2
s−

1
2
∂s

∂xi
(1.18)

It is easy to state that s−
1
2 = 1

r . To find ∂s/∂xi :

∂s

∂xi
=

∂

∂xi

(
3∑

n=1

ynyn

)
=

3∑
n=1

∂yn
∂xi

yn +
3∑

n=1

yn
∂yn
∂xi

= 2
3∑

n=1

∂yn
∂xi

yn (1.19)

but noting that ∂yn/∂xi = 1 if n = i and 0 if n 6= i , this becomes (in open form)

∂s

∂x1
= 2

3∑
n=1

∂yn
∂x1

yn

= 2 (1× y1 + 0× y2 + 0× y3)

= 2y1
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similarly

∂s

∂x2
= 2y2

∂s

∂x3
= 2y3

therefore we can say
∂s

∂xi
= 2yi (1.20)

Inserting this into Equation 1.18 with the definition of ri = yi/r given in Equation 1.16 we get

∇r ≡ ∂r

∂xi
= ri (1.21)

Thus, it can be said that, the gradient of the distance function gives the components of the unit vector
along the measured distance direction.

1.2.2 The directional derivative

For later use in mathematical formulations, we need to define the directional derivative (DD) of a
function. Assume that you have a scalar function φ defined over a volume V . It is desired to find
the change of this function along a given direction, say h. Assume that h is the unit vector along the
h−direction. Assume a point Q that is ∆h away from the point P.

Figure 1.4: The geometical representation of the DD

The DD is defined as
∂φ

∂h
(P) = lim

∆h→0

φ(Q)− φ(P)

∆h
(1.22)

Geometrically, it may be shown that

∂φ

∂h
(P) = h · ∇φ(P) (1.23)

1.2.3 A short discussion on the DD of the distance function between two points

Assume that we define the distance function r(A,P) as the distance between the fixed point A and
the varied point P. Recall equations (1.13) and (1.16). From Equation 1.23 we have, for DD of r,

∂r

∂h
(P) = h · ∇r
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but we have proven befor (in section 1.2.1 that ∇r = r. Therefore

∂r

∂h
(P) = h · r =

3∑
i=1

hiri = h1r1 + h2r2 + h3r3 (1.24)

In the context of boundary elements, generally, the directional derivative is used to calculate the DD
of the distance function defined at a boundary point in the direction of the outward unit normal at
that boundary point. Thus, the outward unit normal at the boundary denoted by n, this DD can be
expressed as

∂r

∂n
(P) = n · r =

3∑
i=1

niri = n1r1 + n2r2 + n3r3 (1.25)

1.3 Kronecker’s Delta and the summation convention

1.3.1 Kronecker’s Delta

At this point, it is better to define the Kronecker’s delta, δij :

δij =

{
1 if i = j

0 if i 6= j
(1.26)

Note that, previously, in the short practice we have said: ∂yn/∂xi = 1 if n = i and 0 if n 6= i . This is
to say

∂yn
∂xi

= δni (1.27)

It also needs emphasizing a property of Kronecker’s delta that we have seen in the short practice:

N∑
n=1

δnivn = vi (1.28)

independently from the range of n .

1.3.2 Summation Convention

Also, at this point, it would be very advantageous to define the summation convention. Note that,
we used a summation sign in our formulations. Einstein, in his formulations, used a different notation
that drops the summation sign. Please skim over the formulations where you see a summation sign:

• Eq(1.7) :
∑3

n=1

∂qn
∂xn

= 0 : In this equation, the summation is done over the index n, which is

repeated in differentiation

• Eq(1.8) :
∑3

n=1

∂

∂xn

(
k
∂u

∂xn

)
: In this equation, again, the summation is done over the index

n, which is repeated in differentiation

• Eq(1.15) : r =
√∑3

n=1 ynyn: In this equation, again, the summation is done over the index n,
which is repeated in multiplication

• Eq(1.28) :
∑N

n=1 δnivn = vi : In this equation, again, the summation is done over the index n,
which is repeated in multiplication

• Eq(1.25) :
∑3

i=1 niri : In this equation, the summation is done over the index i, which is repeated
in multiplicatiron
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We define the summation convention as such: A repeated index in a term in the equation implies
summation over the range of that index.
With this definition, it becomes possible to drop the summation term in our equations. For example,

N∑
n=1

δnivn = vi → Instead of this form we write this equation as → δnivn = vi

or,

r =

√√√√ 3∑
n=1

ynyn → Instead of this form we write this equation as → r =
√
ynyn

It is important to note that, there is no summation over the index n in equations like

yn + xn = pn

In this case, the index n repeats itself in different terms of the equation. But, if the equation was like

p = xnyn

then, it would imply

p =

N∑
n=1

xnyn

1.3.3 Definition of the free index and the dummy index

If an index in a term is repeated only once, it is called a free index. If it is repeated twice (that it
implies summation) then it is called a dummy index. An index is not allowed to appear more than
twice.
A property of the dummy index is: to change the letter for the index does not affect the equation.
That is to say, in an equation like

Kij = δijεkk + 3εij

the index k implies summation over its range as:

Kij = δij

3∑
k=1

εkk + 3εij

assuming the range of k is from 1 to 3. To write this equation with the index k or another letter, like
m does not change the equation:

Kij = δijεmm + 3εij

gives the same equation as before. But, if you have changed the letter representation for a free index,
you have to make the same change in all terms of the equations. For example, if you want to change
the letter i in the term Kij in above equations with the letter n, it is not only to make this change in
Kij only:

Kin = δijεmm + 3εij

is meaningless. You should change the equation as:

Kin = δinεmm + 3εin

Please practice over other equations that has summation sign to obtain them in a form that has no
summation.
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Figure 1.5: Representation of ACS and AXS and some more definitions

1.4 Boundary Element Formulation of the Laplace Equation

Up to now, we have defined the problem, and its solution domain. We call this system as the actual
system (will be denoted by ACS from now on). To proceed with the boundary element formulation,
we introduce an auxiliary system (will be denoted by AXS) that has the same material properties and
that encloses the ACS. In most formulations, this AXS is selected as the infinite space (Fig-1.5).
In the ACS, the governing equations are given by Equation 1.1) and internal flux, qi, is given by
Equation 1.5. In a similar manner, we define a new quantity u∗ in the AXS and the flux associated
with this new quantity is given by

q∗i = k
∂u∗

∂xi
(1.29)

The governing equations in the AXS are assumed to be

k∇2u∗ + ∆(A,P) = 0 (1.30)

At this point, we define the Dirac Delta Function:

1.4.1 The Dirac Delta Function and its properties

Dirac Delta Function is the mathematical representation for a unit point source, where its intensity is
infinite but the integration over the domain is unity:

∆(A,P) = 0 if A 6= P
∆(A,P)→∞ if P→ A

(1.31)
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or in integral form ´
V ∆(A,P)dV = 0 if A /∈ V´
V ∆(A,P)dV = 1 if A ∈ V

(1.32)

Figure 1.6: Dirac Delta function (point representation)

What is this function? As stated before, it is the mathematical representation for a unit source at the
point A. You can see the singularity of this function in Equation 1.31: The value of the function is
zero for every point P, which is different than the application point of the source, A. If the point P
is at the application point, than the value of the function jumps to infinity (Fig-1.6). The power of
the source is equal to unity, and this is seen in equation Equation 1.32. That means, if the point A is
outside the control volume, the total of the source is zero (since if this is the case, that means there is
no internal source), and if it is in the volume, this total source sums up (integral) to unity (although
the intensity of the function is infinite, the integral is unity). Here, we impose a special property of
the Dirac Delta Function (DDF): Any function f(P), when multiplied by the DDF at a point A, the
integral is ´

V f(P)∆(A,P)dV = 0 if A /∈ V´
V f(P)∆(A,P)dV = f(A) if A ∈ V

(1.33)

We will use this property in a short while. A 1D representation of the DDF is given in Fig-1.7.

1.4.2 Betti’s reciprocal theorem for Laplace Equation

Now we have two different solution domains (ACS and AXS) with two different field variables (u and
u∗ respectively) and two different derived variables (qi and q∗i respectively). These derived variables
are related to the field variables through equations (1.5) and (1.29). The governing equations are given
by the equations (1.1) and (1.30) respectively. The formulation that we will introduce now, leads to the
direct formulation in boundary element method (BEM): In the direct formulation, the equations are
derived using physical quantities (like temperature, flux, etc.). There is an indirect formulation, too,
that leads to the same set of equations, but the derivation is not performed using physical quantities,
instead mathematically meaningful parameters are used, which are not necessarily point to a physical
quantity.
We start our formulation by proving the so-called Betti’s reciprocal theorem for Laplace equations.
For this, we first define the product:

∂u

∂xi
· q∗i =

∂u

∂xi
·
(
k
∂u∗

∂xi

)
(1.34)

Note that there is a summation over the index i. Since k can change the location in the equation,

∂u

∂xi
·
(
k
∂u∗

∂xi

)
=

(
k
∂u

∂xi

)
∂u∗

∂xi
= qi ·

∂u∗

∂xi
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Figure 1.7: 1D representation for Dirac Delta function (copied from Wikipedia)

this implies
∂u

∂xi
· q∗i = qi ·

∂u∗

∂xi
(1.35)

This equation is called as Betti’s reciprocal theorem (BRT) and forms the starting point for our BEM
formulations.

1.4.3 The Reciprocity equation for Laplace Equation

In BRT, we can take the volume integral of the both sides
ˆ

V

∂u

∂xi
· q∗i dV =

ˆ

V

qi ·
∂u∗

∂xi
dV (1.36)

Note that, chain rule requires

∂

∂xi
(u · q∗i ) =

∂u

∂xi
· q∗i + u ·

(
∂q∗i
∂xi

)
which can be re-arranged as

∂u

∂xi
· q∗i =

∂

∂xi
(u · q∗i )− u ·

(
∂q∗i
∂xi

)
(1.37)

a similar relation can be written for the right hand side (RHS) of the equation as

∂u∗

∂xi
=

∂

∂xi
(u∗qi)− u∗

(
∂qi
∂xi

)
(1.38)

Inserting equations (1.37) and (1.38) into (1.36) we get
ˆ

V

∂

∂xi
(u · q∗i ) dV −

ˆ

V

u ·
(
∂q∗i
∂xi

)
dV =

ˆ

V

∂

∂xi
(u∗qi) dV −

ˆ

V

u∗
(
∂qi
∂xi

)
dV (1.39)
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It can be said that, with equations (1.1) and (1.5)(
∂qi
∂xi

)
= 0

and similarly, with equations (1.29) and (1.30)(
∂q∗i
∂xi

)
+ ∆(A,P) = 0

With these relations, Equation 1.39 can be re-written as
ˆ

V

∂

∂xi
(u · q∗i ) dV +

ˆ

V

u ·∆(A,P)dV =

ˆ

V

∂

∂xi
(u∗qi) dV (1.40)

Since the DDF is given with relation to two points, namely the fixed point A and the varied (integra-
tion) point P, it would be better to re-write this equation considering these points:

ˆ

V

∂

∂xi
(u(P) · q∗i (A,P)) dV +

ˆ

V

u(P) ·∆(A,P)dV =

ˆ

V

∂

∂xi
(u∗(A,P) · qi(P)) dV (1.41)

Note that, since the governing equation of the AXS is related to the DDF which is a function of both
of the points, A and P, the solution, u∗ and the flux q∗i associated with the solution is a function of
the point A and P. The field variable of the ACS, u, is a function of position, therefore in the integrals
we associate it with the position of the point P. The same property applies to the associated flux, qi.
At this point, we can recall the integral property of the DDF, given in Equation 1.33 for the second
integral on the left hand side (LHS) of the equation:

ˆ

V

u(P) ·∆(A,P)dV = u(A) (1.42)

Inserting this into Equation 1.41 we obtain

u(A) +

ˆ

V

∂

∂xi
(u(P) · q∗i (A,P)) dV =

ˆ

V

∂

∂xi
(u∗(A,P) · qi(P)) dV (1.43)

1.4.4 The Gauss Integral Theorem

It is time to get rid of the volume integrals in Equation 1.43. For this, we first recall the basic knowledge
on gauss integral theorem: For a function (scalar or vector function) defined over the domain V bounded
by the surface S, for any operator that we will denote with �, we have the equality

ˆ

V

∇� φ · dV =

ˆ

S

n � φ · dA (1.44)

This is the most general form of the Gauss integral theorem (GIT). In the given equation n represents
the outward unit normal vector at the corresponding poin on the enclosing surface. We will later apply
this theorem to other type of problems. At this point, we will use the operator for dot product:

ˆ

V

∇ · φ · dV =

ˆ

S

n · φ · dA (1.45)

Now let us try to convert this to the form in equation (1.43). For this, first we write Equation 1.45 in
indicial form as ˆ

V

∂φi
∂xi

dV =

ˆ

S

niφidA
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If we denote
φi = u · q∗i

then it is easy to show
ˆ

V

∂

∂xi
(u(P) · q∗i (A,P)) dV =

ˆ

S

ni (u(P) · q∗i (A,P)) dA (1.46)

similarly, if we denote
φi = u∗ · qi

then this leads to ˆ

V

∂

∂xi
(u∗(A,P) · qi(P)) dV =

ˆ

S

ni (u∗(A,P) · q(P)) dSA (1.47)

1.4.5 The Boundary element equation (BEE)

Inserting (1.46) and (1.47) into (1.43) we obtain

u(A) +

ˆ

S

ni (u(P) · q∗i (A,P)) dA =

ˆ

S

ni (u∗(A,P) · q(P)) dA

but note that
niqi = nik

∂u

∂xi
= k

∂u

∂n
= q

and
niq
∗
i = q∗ (1.48)

thus the equation turns to

u(A) +

ˆ

S

q∗i (A,P) · u(A) · dA =

ˆ

S

u∗i (A,P) · q(P) · dA (1.49)

This equation is the so-called Boundary Element Equation (BEE). As can be seen from Equation 1.49
all integrals are on the boundary of the region. If one can find a way to evaluate the surface integrals
in this equation, it is possible to find the solution u(A) at any point within the solution domain.
Since it is almost impossible to find a closed-form solution to these integrals even with very simplified
geometries and boundary conditions, it is our intention in this lecture to attempt a numerical solution
to the problem.
For simplicity, we will firstly work on 2D applications of the Laplace Equation. In 2D, a similar analysis
can be followed, the only difference being the domain is two dimensional enclosed by a curve in 2D
(which is in fact a 1D structure). A similar analysis in 2D would reveal to the same BEE, the only
difference being that instead of surface integrals, we are left with line integrals:

u(A) +

ˆ

C

q∗i (A,P) · u(A) · dS =

ˆ

C

u∗i (A,P) · q(P) · dS (1.50)

1.5 Fundamental solutions for the Laplace Equation

Previously, we have constructed an AXS for formulating the BEE. In this AXS, we have the field
variable as u∗i and the derived variable as q∗i . The governing equations for the AXS were given as in
Equation 1.30 and the flux is defined as in Equation 1.29. At this point, we attempt the solution of
these equations in infinite domain (these are therefore called as the Kelvin Solutions or the Green’s
functions in infinite domain). First of all, we have to note that, since the infinite medium extends
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to infinity in all directions, there will be spherical-symmetry (the solution won’t change in terms of
direction - it will change with distance only). When we use the spherical coordinates, the Laplace
operator reads

∇2 =
1

r2

∂

∂r

(
r2∂�
∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂�
∂θ

)
+

1

r2 sin(θ)

∂2�
∂ψ2

(1.51)

If we consider that there is no dependence on θ and ψ , this equation reduces to

∇2 =
1

r2

∂

∂r

(
r2∂�
∂r

)
(1.52)

Thus, the Equation 1.30 becomes

k
1

r2

∂

∂r

(
r2∂u

∗

∂r

)
+ ∆(A,P) = 0 (1.53)

The solution of this equation requires the partitioning of the domain: the infinitessimal domain that
is in close neighborhood of the point A, and the rest of the domain. In the rest of the domain, since
the domain does not contain the point A, the solution is the solution of the homogenous equation

k
1

r2

∂

∂r

(
r2∂u

∗

∂r

)
= 0

which is simply
u∗(A,P) = c1 +

c2

r
(1.54)

The constant c1 is the reference solution - the value of the solution which is constant over all the
domain. Therefore, it can be omitted (can be assumed to be zero, assuming a zero-reference). To find
c2, a small sphere of radius ε is observed around the point A and the limit as ε → 0 is considered.
With some mathematical manipulations, it becomes

c2 = − 1

4πk

for which, u∗, which is mostly named as the first fundamental solution is obtained as

u∗(A,P) = − 1

4πk · r(A,P)
(1.55)

Here, r(A,P) refers to the Euclidean distance between the points A and P. With (1.29) and (1.48)
we can obtain the flux solution, q∗, which is mostly named as the second fundamental solution

q∗(A,P) = − 1

4πr2

∂r

∂n
(1.56)

A similar solution can be done for 2D analysis, where in this case, there is a circular symmetry (the
solution is independent of the angle, depending only on distance). In this case, we can use the polar
coordinates for which the laplace operator is defined as

∇2 =
∂2�
∂r2

+
1

r

∂�
∂r

+
1

r2

∂2�
∂θ2

(1.57)

which, for circular symmetry requires the equation

k

(
∂2u∗

∂r2
+

1

r

∂u∗

∂r

)
+ ∆(A,P) = 0 (1.58)

with the solution
u∗(A,P) = − 1

2πk
ln(r) (1.59)

leading to

q∗(A,P) = − 1

2πr

∂r

∂n
(1.60)
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1.6 The Reduced boundary element equation (RBEE)

Eq(1.49), in 3D, or Equation 1.50, in 2D, are given for the case where A is in the solution domain -
therefore the integral

´
V u(P) · ∆(A,P)dV gives u(A) as in Equation 1.42. It is easy to show that,

this integral yields to zero when the fixed point A is outside the solution domain. The main problem
arises when the point A is on the boundary - because, it is neither totally in the solution domain, nor
totally out of it.
Here, we will not go into details of the derivation; just present the logic (in 2D). Assume that the
point A lies on a smooth surface. Let us construct a circle around the point A that has a radius ε (see
Fig-1.8).

Figure 1.8: A 2D representation of the smooth boundary case

Since the boundary is smooth at the point A, there is one and only one tangent line that can be drawn
on the boundary at the point A and that tangent line divides the circle into two equal half-circles
(having the same area). Even if we decrease the radius of the circle, this fact won’t change: this is a
mathematical way of saying that half of the point A is in the solution domain and the other half of
it is outside. Arising from this fact, it can be shown that, for the fixed point A being on a smooth
portion of the boundary, ˆ

V

u(P) ·∆(A,P)dV =
1

2
u(A) (1.61)

This is also valid for 3D analysis (due to the same reason, only change being in this case we employ a
sphere instead of a circle around the point A).
In case of A being on an edge (Fig-1.9) it can be seen that, the internal angle being α, only the
α/2π portion of the circle can be considered to be in the solution domain. Note that α is in radians.
Therefore, again, it can be shown that

ˆ

V

u(P) ·∆(A,P)dV =
α

2π
u(A) (1.62)

From Equation 1.62 it can easily be seen that for α = π, which represents smooth surface, the constant
on the right hand side becomes 1/2 just as Equation 1.61 requires.
A smilar relation can be given for 3D applications, where the circle is replaced by sphere and the lines
that construct the edge are replaced by the surfaces that coincide at the edge. With above information,
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Figure 1.9: A 2D representation of boundary edge

eg., equations (1.61), (1.62) and (1.42) we can re-write equations (1.49) and (1.50) as

c(A)u(A) +

ˆ

S

q∗i (A,P) · u(A) · dA =

ˆ

S

u∗i (A,P) · q(P) · dA (1.63)

and
c(A)u(A) +

ˆ

C

q∗i (A,P) · u(A) · dS =

ˆ

C

u∗i (A,P) · q(P) · dS (1.64)

with the definition of c(A) ad

c(A) = 1 if A ∈ V
= 0 if A /∈ V

= 1/2 if A is on a smooth boundary
= α/2π if A is on an edge with angle α

(1.65)

Eq(1.63) and (1.64) are called the reduced boundary element equations (RBEE). From this point on,
we’re left with the solution of this RBEE, which is the topic for the next chapter.



Chapter 2

Numerical Solution

As stated before, it is almost impossible to obtain a closed-form (analytical) solution to the BEE that
is given in Equation 1.63 or Equation 1.64 when the geometry of the domain and/or the imposed
boundary conditions are icomplex. Therefore, a numerical solution is required. This chapter is totally
devoted to such numerical solutions. For simplicity, we will work on 2D applications. Later, we will
extend our knowledge on 3D applications too.
Note that, what we intend to do basically is to find a proper way to evaluate the boundary integrals
(surface integrals in 3D and line integrals in 2D). For this, let us first introduce a proper way to
numerically evaluate any bounded integral, such as

I =

bˆ

a

f(x)dx (2.1)

There are lots of methods to numerically evaluate such integrals. But we will focus on mainly to
the method called the Gauss Quadrature (GQ). The method, in some books, is called as the Gauss-
Legendre quadrature, since it depends mainly on the finding roots for Legendre polynomials (but that’s
not our problem).
To start with, we will first apply a change of variables: assume we have defined a new variable, τ , such
as

x =
b+ a

2
+
b− a

2
τ (2.2)

This requires

dx =
b− a

2
dτ (2.3)

Note that, for τ = −1→ x = a, for τ = +1→ x = b, or vice versa. It can be easily stated that

I =

bˆ

a

f(x)dx =

+1ˆ

−1

f(x(τ))
b− a

2
dτ =

+1ˆ

−1

F (τ) · J · dτ (2.4)

where, J is called the Jacobian of the transformation. In our transformation, which is a linear trans-

formation (since x is a linear function of τ), J =
b− a

2
. The function F (τ) is obtained by inserting

Equation 2.2 into every location of x in f(x).
Gauss-Legendre Quadrature, or with a more known name, Gauss Quadrature (GQ) approximates this
integral as

I =

+1ˆ

−1

F (τ) · J · dτ = J ×
N∑
n=1

F (Tn) · wn (2.5)

In this equation, Tn are the Gauss points (GP) and wn are the weights (GW) and the order of the GQ
is given by the number of the terms in the series expansion, N . Recall, from mathematics, a GQ of
order N can exactly evaluate a polynomial of order 2×N −1. In Section-2.1 we demonstrate this fact.

16
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2.1 A practice on Gauss Quadrature

We will try to approximate the integral

I =

4ˆ

0

(x3 + 5)dx = 84

For this, we will use a second order GQ, eg. N = 2, which would approximate 2 × 2 − 1 = 3rd order
polynomial exactly (what we expect now is the numerical solution would be exactly equal to 84). It is
easy to find a second order GQ from literature as tabulated data:

n Exact Tn Exact wn Computer undestands Tn as Computer understands wn as
1

√
1/3 1 0.5773502691896258×100 0.100000000000000×101

2 -
√

1/3 1 -0.5773502691896258×100 0.100000000000000×101

First, let us evaluate the Jacobian:

J =
4− 0

2
= 2

Note that, the transformation is

x =
4 + 0

2
+

4− 0

2
τ = 2 + 2τ

With this,
F (τ) = (2 + 2τ)3 + 5

Therefore, GQ witn N = 2 can be constructed as

I = 2×
{[

(2 + 2× 0.5773502691896258)3 + 5
]
× 1 +

[
(2 + 2× (−0.5773502691896258))3 + 5

]
× 1
}

= 2× (36.39600717839002 + 5.603992821609979)

= 84.0000000000000

You can see that the answer matches the exact result. Of course, this would not be possible if the
function was not a polynomial.
You may find a small program code written in SciLab the directory:
/code/scilab/ch2/Gauss_Integrate.sce

In the code, a 10-pt Gauss Quadrature is used. You can change the function in the code to evaluate
different functions. Also you can change the integration limits. Doing so, you may complete the table
below:

Integral (with limits) Exact value Approximate value (code)´ +3
−2

(
x6 − 2x5 + 7

)
dx 144.04761904761904´ +3

0 2 ln(x+ 1)dx 5.090354888959125´ +3
0 ln(x)dx 0.2958368660043291´ π

0 (sin(x)× cos(2x)) dx −2

3
= −0.6666666666666667´ π

0

(
sin(3x) · cos(2x) + 2x3 + 3x sin(x)

)
dx 59.32932347777059´ 1

0

1

x+ 1
dx ln(2) = 0.6931471805599453

´ 1
0

1

x+ 0.1
dx ln(11) = 2.3978952727983707
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Figure 2.1: The definitions for the line integral

2.2 The line integral

In 2D, the boundary integral reduces to a line integral as in Equation 1.50. Let us first remember
what a line integral is. Assume a function f of position, which we denote as f(P). Note that, in
two dimensions, P had the coordinates (x1, x2) which we denote in indicial form as xi. Therefore, we
will denote the function as f(xi). Also assume a curve, C over which the integral will be taken (see
Figure 2.1).
The line integral is evaluated over a domain that starts from the point A end ends at the point B. The
length of the curve along AB direction is measured with the varialbe S. We will denote the position
vector of the point P as R. Note that, as S changes, R changes, that means, R is a function of S, eg.,
R ≡ R(S).
Assume that, when we change S with a little amount, say ∆S, we reach to a point Q (Figure 2.2). The
difference of the two position vectors, RP (the position vector at the point P) and RQ (the position
vector at the point Q) can be denoted as ∆R. Note that, in two dimensions,

∆R =

√
(∆x)2 + (∆y)2 (2.6)

In case that the point Q gets closer and closer to the point P, the term ∆ is replaced by d and it can
be shown that,

Q → P 7→ ∆→ d

∆R→ dR

∆S → dS

‖dR‖ → dS

∆x→ dx

∆y → dy (2.7)

where ‖dR‖ denotes the length of the vector dR. It can be proved that, t being the unit tangent at
the point P in the positive direction of S,

t =
dR

dS
(2.8)

Again, from Figure 2.2, in view of conversions given in Equation 2.7, it can be said that

dS =

√
(dx)2 + (dy)2 =

√
(dx1)2 + (dx2)2 =

√
dxidxi (2.9)
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Figure 2.2: More definitions

2.2.1 Definition of the line integral

Remember that we have assumed a function f of the position, f ≡ f(xi). It is obvious that, for each
location, P, on the curve C, this function will have a value given by f(P). Now assume that we
subdivide the curve C into N line sections (see Figure 2.3). Each line section is denoted by Ci and
has a length denoted by Li and has a midpoint which is denoted by Pi (where i = 1..N ).

Figure 2.3: The division of the curve into N elements

In this context, we will assume that the variation of the function f over every line segment is constant
with the value that it has on the midpoint of the line segment. That is to say, over all the line segment,
for example, Ci the value of the function is assumed to be equal to the value f(Pi). With such an
assumption, the term

f(Pi)×∆Si
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gives the area given in Figure 2.4, which is an approximate value of the area under the f − curve.
When we sum all these areas, we would obtain the summation

F =

N∑
i=1

f(Pi) ·∆Si (2.10)

where f(Pi) are the values of the function f evaluated at the center point Pi.

Figure 2.4: The function f over a representative line segment Ci

As you can imagine, we can select N as large as possible, and as N → ∞, ∆Si → dS. With this
observation, we define the line integral as

I =

ˆ

C

f(xi) · dS = lim
N→∞

N∑
i=1

f(Pi) ·∆Si (2.11)

assuming the given limit converges (exists). At this point, we have to find a way to evaluate I without
dividing into infinite number of elements. For this, we express the curve C in a different way:

2.2.2 Parametric representation of a curve

At this point we introduce a parameter, t , to track the points of the curve C in a two-dimensional
space which is referred to a Cartesian coordinate system, xi. That is to say, we try to find a single
parameter t and two functions x1(t) and x2(t), such that when we change t, the point P(x1(t), x2(t))
moves along the curve C (preferably in the positive S−direction). A quick example is the parametric
representation of the circle:

x1(t) = a cos(t)

x2(t) = a sin(t)

0 ≤ t ≤ 2π

where a is the radius of the circle (a constant) and t represents the angle from the horizontal axis
(mostly, x1 -axis). You can easily verify that, as we change t from 0 to 2π, the point P(a cos(t), a sin(t))
moves along the circle with center at the origin and having a radius of a (see Figure 2.5).
As another simple example, we can give

x1(t) = 2 cos(t) + t

x2(t) =
√
t

0 ≤ t ≤ 1
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Figure 2.5: The evolution of the circle when a = 1, graphs are taken at t = π/6 (top left), t = 2π/3 (top
right), t = 4π/3 (bottom left) and t = 355π/180 (bottom right)

this would give the curve in Figure 2.6.
Now, how does this representation of the curve help us? Since we have related the coordinates of any
point on the curve to a single parameter t, we can easily relate dxi to dt. For example, in the case of
the circle, we have

dx1 = −a sin(t) · dt
dx2 = a cos(t) · dt

or in the case of the curve in Figure 2.6,

dx1 = (−2 sin(t) + 1)dt

dx2 =
1

2
√
t
dt

Recall Equation 2.9 which states dS =
√

(dx1)2 + (dx2)2. For the circle, this would imply

dS = a · dt

and for the curve in Fig-2.6 this would be

dS =
√

(−2 sin(t) + 1)2 + 1/4t · dt

It is also possible to re-write the function f(xi) with replacing xi → xi(t). Thus the integral becomes

I =

ˆ

C

f(xi) · dS =

tBˆ

tA

f(xi(t)) · J(t) · dt (2.12)

where J(t) is named as the Jacobian. For the circle example, J(t) = a, and for the other curve
J(t) =

√
(−2 sin(t) + 1)2 + 1/4t.
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Figure 2.6: A simple curve

2.2.3 A simple example on line integral

Assume that, we want to find the line integral of the function

f(xi) = 2x1 + x2
2 (2.13)

on the circle with parametric equation

x1(t) = 2 cos(t)

x2(t) = 2 sin(t)

0 ≤ t ≤ 2π (2.14)

With this parametric equation, f(xi) can be re-written as

f(t) = f(xi(t)) = 4× cos(t) + 4× sin2(t)

Recall that,

dx1 = −2 sin(t)dt

dx2 = 2 cos(t)dt

which leads
dS =

√
4 sin2(t) + 4 cos2(t)dt = 2dt

Therefore, the integral becomes

I =

ˆ

C

(2x1 + x2
2) · dS

=

2πˆ

0

(4 cos(t) + 4 sin2(t)) · 2 · dt

= 8×
[
t

2
+ sin(t)− 1

4
sin(2t)

]2π

0

I = 8× π (2.15)

Here, we should note that, with f(xi) = 1, one obtains the length of the curve (this can be easily
verified since each line segment length is summed up). With above circle, to find the circumference of
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the circle one can use

IC =

ˆ

C

(1) · dS

=

2πˆ

0

(1) · 2 · dt

= 2× [t]2π0

IC = 4π

which is compatible with what we have learned in Calculus: the circumference of a circle with radius
r is equal to 2πr. In this case, r = 2, therefore the circumference ended up to be 4π = 2π(2).

2.2.4 Numerical evaluation of line integrals

In case of the line integral taken over a circle, the analytical evaluation both possible and simple.
In some cases, though, even if the analytical evaluation is possible, it may not be simple. Also,
programming an analytical solution that is applicable to all curves is not simple. Therefore, this
section is devoted to numerical evaluation of line integrals. There are of course many ways to evaluate
line integrals numerically, but we will employ the simplest way: use the definition of the line integrals.
Recall that, a line integral is defined using a series expansion with dividing the curve into N line
segments (and then increasingN to infinity). We will use the same method here with the difference that
we will not take N to infinity, we will be satisfied with N being sufficiently large. For a representative
figure of this division, refer to Figure 2.7 where the curve C is divided into N line segments using K
points on the curve. Each line segment has a start point and an end point that fixes its orientation
in 2-D space. For example, line segment (LS) #1 starts with Point (Pt) #1 and ends with Pt#2.
Similarly, LS#3 starts with Pt#3 and ends with Pt#4.

Figure 2.7: A curve divided to line segments

Let us take a representative line segment under magnification, which is presented in Figure 2.8.
There are two different types of numbering for the points on the line segments (as the figures suggest
clearly). The first type is called the local numbering: in each LS, the numbering starts with 1 and
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Figure 2.8: A representative line segment under magnification

counts the number of points on the LS. In our case, the number of points is 2, therefore, start point is
numbered (locally) as 1 and the end point is numbered as 2. The second type of numbering is called
the global numbering. In this case, each point is numbered in a global fashion. The start point can be
represented by any number (in Figure 2.8, it is numbered as k ), and the end point similarly (numbered
as m).
To examplify this, let us take the example of a circle divided into six line segments as in Figure 2.9.
The table in the figure presents the global numbering for each local number of each line segment. Such
tables (or lists) are named as element connectivity lists, or simply, connectivity. You may find a small
program code written in SciLab in:
/code/scilab/ch2/divide_parametric.sci

that divides a curve (with a given parametric equation) intoN line segments and returns the point coor-
dinates and the connectivity for such a division process. In the code, as a sample parametric equation,
a circle is presented; but this can be easily changed by editing the function parametric_equation.
Let us return to our original discussion: we divided the curve into line segments of each we know the
orientation by the location of their first and second local points. Since, each division is a line segment,
each point on this division should lie on a line - this means that there is a linear corrolation between
the coordinates of the points on the line segment and its orientation. There are several different ways
(in fact, infinitely many ways) to represent this linear corrolation, one of which is,

xPi =
x2
i + x1

i

2
+
x2
i − x1

i

2
t (2.16)

where −1 ≤ t ≤ +1. You can verify that this is a linear relation in terms of xPi and t . You can also
verify that when t = −1, we get xPi = x1

i , which means the point is located at the first local point of
the line segment. Similarly, when t = +1, we get xPi = x2

i which means that the point P is located to
the second local point of the line segment. As expected (since this is a linear relation), when t = 0,
the point P locates the midpoint of the line segment, therefore

xMi = xPi (t = 0) =
x2
i + x1

i

2
(2.17)

Well and good, now how does this help us? In fact, above, we have presented a common representation
of the parametric equations that can be used for all defined line segments. If we input the coordinates
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Figure 2.9: Circle divided into six line segments

of the first and second local points of the line segment that we have in hand, we can easily obtain the
corresponding parametric equation. We can go further: with Equation 2.16,

dxi =
x2
i − x1

i

2
dt (2.18)

In this equation, we dropped the superscript P for simplicity (and we will do from now on for similar
expressions that involve P). Since, eq.(2.9) we have dS =

√
dxidxi, with eq.(2.18) we obtain

dS =

√(
x2

1 − x1
1

2
dt

)2

+

(
x2

2 − x1
2

2
dt

)2

=

√
dt2

4

[(
x2

1 − x1
1

)2
+
(
x2

2 − x1
2

)2]
=

dt

2

√[(
x2

1 − x1
1

)2
+
(
x2

2 − x1
2

)2]
but note that, the length of the line segment is given as

L =

√[(
x2

1 − x1
1

)2
+
(
x2

2 − x1
2

)2] (2.19)

Therefore,

dS =
L

2
dt (2.20)

Any line integral over the nth line segment would therefore become

In =

ˆ

Cn

f(xi) · dS =

+1ˆ

−1

f(xi(t)) ·
L

2
· dt (2.21)



CHAPTER 2. NUMERICAL SOLUTION 26

Note that this is a very similar expression to Equation 2.5 with J = L/2 and F (τ) = f(xi(t)). Therefore
the integral can be approximated with

In =
L

2

N∑
n=1

f(xi(Tn))× wn (2.22)

2.2.5 Wrapping things up

In this section, we will gather up our knowledge on numerical evaluation of line integrals employing
a simple example: the line integral over a circle with function given in Equation 2.13. The circle is
located at the origin with radius r = 2, where the parametric equations are presented in Equation 2.14.
The general block diagram of the way we evaluate the line integral is given in Figure 2.10. First,
we divide the curve into N line segments. Over each line segment we use the transformation in
Equation 2.16 so that we obtain a parametric relation of the curve. Using this, obtain the function
value at this point, where we use GQ to evaluate the line integral corresponding to that line segment,
as in Equation 2.22. Then we sum up all the contributions from each line segment, to obtain the final
value.

Figure 2.10: Block diagram for line integral evaluation

Please refer to the file ~/code/Ch2/line_integral.cpp to practice this line integral evaluation procedure.
You may observe that, with 6 divisions, the line integral value will deviate considerably from the exact
result, whereas, as you increase the number of divisions, you get closer to the exact value. The table
below shows the integral value obtained from the code with different n values. Compare it with the
exact value given in Equation 2.15.

number of line segments (n) value of the integral from code
6 20.00000
36 24.97374
216 25.12831
1296 25.13262
7776 25.13274
exact 25.13274
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Self Practice
Consider a circle with radius ρ = 2 units whose center is located at the coordinate-origin. Consider,
further, that a fixed point A is given on this circle (also, for later practice, you may select this fixed
point any other point in space) with coordinates A(2, 0). Modify and use the line integral function to
evaluate the line integral ˆ

C

r(A,P)× r(A,P)dS = 32π (2.23)

where r(A,P) is the Euclidean distance between the fixed point A(2, 0) and the varied point (on
the circle) P(x1, x2). You can compare the evaluated value with the exact value which is given in
Equation 2.23.

2.2.6 Matrix Form of the Boundary Element Equation

Recall that, the RBEE is given as in Equation 1.64. At this stage, we will perform the simplest way to
solve this equation. Assume that, we have re-drawn the domain in figure 1.3 using a finite number of
line segments as in figure 2.11. To designate the number of line segments, we will denote this quantity
by N.

line segment #1

midpoint of 
line segment #1

A1

line segment #2
P2

P1

varied point on 
line segment #1

varied point on 
line segment #2

line segment #N

PN

varied point on  
line segment #N

Figure 2.11: Continuum potato divided into line segments

Let us write the equation 1.64 at the midpoint of the first line segment, which will be denoted as
A1, where the subscript 1 will denote that this point belongs to the first line segment. Since the line
segment is smooth at this location of A1, the value of C(A1) will be 1/2:
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1

2
u(A1) +

ˆ

C1

q∗(A1,P1) · u(P1)dS1 +

ˆ

C2

q∗(A1,P2) · u(P2)dS2 + · · ·+
ˆ

CN

q∗(A1,PN ) · u(PN )dSN =

ˆ

C1

u∗(A1,P1) · q(P1)dS1 +

ˆ

C2

u∗(A1,P2) · q(P2)dS2 + · · ·+
ˆ

CN

u∗(A1,PN ) · q(PN )dSN (2.24)

Note that, in equation 2.24, Ci refers to the ith line segment, Pi refers to the varied point on the line
segment Ci, and dSi designates that the line integral is taken over the line segment Ci.
At this point, we assume that for all the line segments, the value of u and q are constant with the value
evaluated at its midpoint. This assumption, although a very rough approximation, is an assumption
that could converge to an exact value as the number of line segments are increased. We denote the
midpoint of each line segment with the notationAi where the subscript i denotes that it is the midpoint
of the line segment Ci. So, mathematically, what we assume can be represented by

u(Pi) = u(Ai) ∀Pi ∈ Ci (2.25)

and
q(Pi) = q(Ai) ∀Pi ∈ Ci (2.26)

We can further shorten the notation by the definitions

ui = u(Ai) and qi = q(Ai) (2.27)

In view of these definitions and assumptions, equation 2.24 becomes:

1

2
u1 + u1 ·

ˆ

C1

q∗(A1,P1) dS1 + u2 ·
ˆ

C2

q∗(A1,P2) dS2 + · · ·+ uN ·
ˆ

CN

q∗(A1,PN ) dSN =

q1 ·
ˆ

C1

u∗(A1,P1) dS1 + q2 ·
ˆ

C2

u∗(A1,P2) dS2 + · · ·+ qN ·
ˆ

CN

u∗(A1,PN ) dSN (2.28)

Note that, in equation 2.28, the integrals

H1 j =

ˆ

Cj

q∗(A1,Pj) dSj (2.29)

and
G1 j =

ˆ

Cj

q∗(A1,Pj) dSj (2.30)

can be evaluated using Gauss quadrature.


